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Hi all,

Thanks to Peter, I now have a reasonably digestible instance of the
results in my notes from last year, see below. With this, I attempted
an independent check of the Peter's soundness bounds.  The simplest
closed form comparison I can come up with favors Peter's bound and
agrees to lowest order in the relevant quantities. It is based on a
test factor strategy that is adaptive and has some interesting
optimization opportunities to explore, which complicates a general
comparison.  At a glance, the optimized gain rate may be better, but
with worse behavior with respect to the significance parameter.  It is
basically the arguments from my notes of last year and the reduction
to probability estimation I mentioned at the end of our last workshop
and that we have discussed since then.  Everything simplifies in the
relevant case where $E$'s classical state is fixed at the beginning of
the protocol. If correct, these results would be a good basis of a
follow-up paper that deals with the issue of adaptation and the
general convex operational ("super-quantum") setting for randomness
expansion.

Remark: The simplification is possible because the standard
interpretation of "untrusted devices" is translated into a complete
absence of physical coupling between $E$ and the devices (and other
related constraints on couplings). This is expressed operationally by
describing the rounds in terms of quantum operations acting
independently on specific subsystems. This is what I learned with
Peter's help.  I am sorry, I should have realized this before, it is
pretty obvious in retrospect, just from various diagrams in Colbeck's
thesis. I didn't check whether anyone weakened these operational
assumptions, but as pointed out to me by Peter, one of the latest
papers from Renner's group uses the same interpretation (and has
similar diagrams). In my notes, besides the known complication of
considering general, continuous stochastic processes, I didn't
constrain communication operationally, instead I explicitly defined
what information cannot leak by conditional independence constraints
on stochastic processes.  This can be thought of as coming from the
``other'' side, favoring generality: Take the most general situation
with or without couplings, and pin down exactly how they should be
minimally constrained to ensure the soundness property we need.  In my
opinion, this is more realistic (there is no such thing as isolated
labs in reality, no control by E is implied), and it can be used to
target one's physical barriers to exactly what information should not
leak. It also becomes relevant when composing multiple protocols while
making use of protocol outputs. Much of the difficulty of proving the
results in my notes came from having to keep track of these stochastic
processes.  For the single-use protocol (no composition)
and the randomness expansion application using our techniques, it now
looks like one can reduce the general situation to the
operationally-constrained one, so for now, this appears to be
w.o.l.g. (as far as our soundness results are concerned), maybe even
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in the convex operational formalism for physical systems.

Here is an analysis leading to soundness. it is based on probability
estimation by test martingales:

We are considering the sequence of trials with settings $Z_i = X_i
Y_i$ and outcomes $C_i = A_i B_i$. Write $U_i=X_i Y_i A_i B_i $.
(Juxtaposition denotes concatenation.)  The system $E$ with respect to
which we are to produce private randomness is assumed to be classical
and fixed initially.  We condition everything on a specific value of
$E$, making sure that nothing in the proof depends on the particular
value $e$ of $E$.  Conditional on this value, we can then just
consider $(U_i)_i$ without explicit mention of $e$. I write $U_{\leq
k}=(U_i)_{i=1}^k$ and similarly for the other stochastic sequences in
play.  The usual fundamental assumptions are that $Z_i$ is uniform
conditional on $U_{\leq i-1 }$ and $Z_i C_i$ satisfies the
non-signaling conditions conditional on $U_{\le i-1}$.  Let $T$ be a
real-valued function of $U$, the reference Bell function.  We assume
that $\lang T\rang_{LR} \leq 1$ and $\lang T\rang_{PR} \leq 1+m$ for
all local realistic distribution LR and all PR boxes PR. Equivalently,
$1+m$ is the maximum expectation of $T$ over all non-signaling
distributions. For this treatment, $T$ does not need to be positive,
only the functions to be derived from $T$ must be positive. But
assuming that it is positive seems to be w.o.l.g. in view of extra
parameters we can choose.

The main idea is to give a bound $\Prob(c_{\le n}|z_{\leq n})\leq
p_{max}$ at a significance level of $\epsilon$. Here $\epsilon$ is the
soundness parameter after $n$ trials.  This is a purely statistical
estimation problem.  It requires finding a statistic $P_{max}$ such
that $\Prob(\Prob(C_{\le n}|Z_{\leq n})\leq P_{max})\ge 1-\epsilon$.
Note that the inner $\Prob$ defines a random variable (a conditional
expectation), and the outer probability is determined by the joint
distributions of all random variables in the argument.

To turns this into a standard sound protocol suitable for randomness
extraction, let $\sigma$ be the requested number of random bits at
significance level $\epsilon$. The protocol fails if
$p_{max}>2^{-\sigma}$ and succeeds otherwise. This protocol is then
sound according to our definitions. It is also true that a sound
protocol for min-entropy outputs can be turned into a probability
estimation protocol, but we do not need this here. (I have some notes
explaining this that I sent out a while ago.)

The desired bound $p_{max}$ is obtained by first relating the excess
over $1$ of the actual expectation $\lang T\rang$ to the maximum
probability of measurement outcomes given the settings, on a given
trial. (If indeces are omitted, it is a generic trial, with
probability distributions conditioned on the past, which we generally
define to be the previous trials' settings and outcomes, as well as,
implicitly, $e$) Let $q$ be the minimum probability of PR boxes in a
representation of the distribution of $U$ in terms of a mixture of
local realistic distributions and PR boxes [See Peter's earlier paper
on this decomposition]. Then the maximum probability of an outcome
given a setting is bounded by $1-q/2$, where the maximum can be
achieved if the LR part is deterministic and equal to one of the
outputs of the (single) PR box in the distribution.  The constraints



on $T$ imply that $q/2 \ge (\lang T\rang-1)/(2m)$.  [This inequality
is also explained in Peter's proof with a bit more detail.  For
current purposes, we don't need to know that only one, distribution
dependent, PR box is needed in the decomposition, we just need that
the non-signaling polytope is the convex closure of PR boxes and LR
distributions.]

Define $Q_i$ as the random variable which returns the value of $q$ (as
defined in the previous paragraph) for the $i$'th trial conditional on
$U_{\le i-1}$.  Before the $i$'th trial, the probability distribution
for the next given $U_{\leq i-1}$ is determined, thus so is the value
of $q$, making $Q_i$ a random variable that is ``determined'' by
$U_{\le i-1}$ in the technical sense of stochastic sequences. We use
$\prod_{i=1}^n (1-Q_i/2)$ as an upper bound on the desired probability
$p_{max}$ (see below).  Equivalently, we can estimate $\prod_{i=1}^n
(1-Q_i/2)^{-\alpha}$ for any given $\alpha>0$.  We do not know this
product, but since it comes from a determined process we can estimate
it via test-martingale methods.  [One of the main differences to
Peter's proof is that here we focus on inverse probabilities for
estimation purposes and formulate trial-wise linear bounds for
these. This bypasses the applications of the arithmetic-geometric mean
inequality and enables direct use of the conventional test-martingale
inequalities. But it introduces extra parameters to optimize.]  The
following inequality is useful for this purpose: For $0\leq q,q_0<1$,
$\alpha>0$,

\[
(1-q/2)^{-\alpha} \ge (1-q_0/2)^{-\alpha}+\alpha(q-q_0)(1-
q_0/2)^{-\alpha-1}/2.
\]

The expression on the right-hand side is the linear approximation to
the function $(1-q/2)^{\alpha}$ of $q$ at $q=q_0$. The inequality
follows because the function is convex. Define $b_{\alpha,q_0}(q)$ to
be the right-hand side of the inequality, a linear, monotone
increasing, function of $q$.  Let
$T_{\alpha,q_0}=b_{\alpha,q_0}((T-1)/m)$. We now constrain $\alpha$
and $q_0$ such that $T_{\alpha,q_0}$ is a positive random variable.
In general, we should optimize the choice of $\alpha$ and $q_0$ for
the best bounds. It turns out that $\alpha$ has to be chosen initially
and kept constant over the trials. (Not doing so requires using a
randomness extractor that can use ``weighted'' min-entropy estimates.)
But both $T$ and $q_0$ can be chosen adaptively. Heuristically, $q_0$
should be chosen so that the inequality above is tight at the mean of
$T$. That is, $q_0 = (\lang T\rang -1)/m$. For now, to simplify
expressions, we set $q_0=0$, which is the default if the second
subscript in expressions for $b$ and $T$ is omitted.

With the above, the following inequality holds:

\[
\lang T_\alpha \rang \leq (1-Q/2)^{-\alpha},
\]

where the inequality holds conditionally on the past, as usual.  The
fact that $Q$ is determined matters here.  This implies that
$T_{i,\alpha}/(1-Q_i/2)^{-\alpha}$ is a test factor, from which we deduce



\[
\Prob(\epsilon \prod_{i=1}^n T_{i,\alpha} \geq \prod_{i=1}^n (1-
Q_i/2)^{-\alpha})\leq \epsilon,
\]

Let $V_\alpha =\prod_{i=1}^n T_{i,\alpha}$. Putting everything
together, let $P_{max,\epsilon}=(V_\alpha \epsilon)^{-1/\alpha}$ and
we find, after some manipulation of inequalities,

\[
\Prob(\Prob(C_{\le n}|Z_{\leq n})\geq P_{max,\epsilon})\leq \epsilon.
\]

The probability here is calculated with respect to the random
variables shown, so $\Prob(.|.)$ has to be interpreted as a
conditional expectation--a random variable determined by its
arguments. In a bit more detail, $\Prob(C_{\le n}|Z_{\leq
n})\leq\prod_{i=1}^n(1-Q_i/2)$ (by expansion of the conditional
probabilities, see below), implying that the event in the argument of
$\Prob$ is a subset of $\prod_{i=1}^n(1-Q_i/2)\geq P_{max,\epsilon}$. This
event is the same
as the event $P_{max,\epsilon}^{-\alpha}\geq \prod_{i=1}^n(1-
Q_i/2)^{-\alpha}$, since
$\alpha$ is positive, and by monotonicity of $(.)^{\alpha}$. (Expressions
$\phi$ of random variables that result in a truth value for each
combination of values of the random variables determine the event
$\{x|\phi(x)\}$, that is the set of points in the event space for which
$\phi$ is true.)

By ``expansion of the conditional probabilities'' we mean recursive
application of the identities

\[
\Prob(C_{\le n}|Z_{\le n}) =
  \Prob(C_{n}|C_{\le n-1}Z_{\le n})\Prob(C_{\le n-1}|Z_{\le n})
  = \Prob(C_{n}|C_{\le n-1}Z_{\le n})\Prob(C_{\le n-1}|Z_{\le n-1}).
\]

The second identity follows by independence of $Z_n$ from the past,
namely $C_{\le n-1}$ and $Z_{\le n-1}$. Note that $Q$ as defined is
determined by $C_{\le n-1}$ and $Z_{\le n-1}$ and, by the above expressions,
provides the desired bound on $\Prob(C_{n}|C_{\le n-1} Z_{\le n})$. [I think a
version of this expansion is also in Peter's proof and is key to these
arguments.]

To get a quick and direct comparison to Peter's bound at $n$, we can
set $\alpha=2m$ Note that for $T$ a test factor, $m$ cannot be arbitrarily
large. I seem to recall that $m\leq 1/2$ in general, in which case $\alpha\leq
1$.  For $\alpha=2m$, $T=T_{\alpha}$, and we get $P_{max,
\epsilon}=(V\epsilon)^{-1/2m}$,
where $V=\prod_{i=1}^n T_i$. Peter's bound for soundness is given as

\[
V\epsilon = (1+2m(1-Q_{max,\epsilon}^{1/n}))^n,
\]



where $Q_{max,\epsilon}$ is his probability bound (written as $\delta$ in the
bound; also, he writes $\epsilon_s$ for $\epsilon$ and we set $\epsilon'=1$
since the
latter only matters when quantifying completeness).
Inverting Peter's bound gives

\[
Q_{max,\epsilon} = (1+(1-(V\epsilon)^{1/n})/2m)^{n},
\]

to be compared to $P_{max,\epsilon} = (V\epsilon)^{-1/2m}$. Set
$r=(V\epsilon)^{1/n}$ and take
logarithms to reduce this to comparing $\log(Q_{max,\epsilon})=
n\log(1+(1-r)/\alpha)$ and $\log(P_{max,\epsilon})= -n\log(r)/\alpha$.  To be
useful, we
need $r\ge 1$. By concavity of $\log$, this comparison favors Peter's
bound.  For our situation $r=(V\epsilon)^{1/n}$ is close to $1$, say
$r=1+\gamma$ with $\gamma$ small compared to $\alpha$. Both expressions are
equal to
$-n\gamma/\alpha + O((\gamma/\alpha)^2)$.


